Image from Google Jackets

Experimental research methods in orthopedics and trauma [E-Book]

By: Contributor(s): Publisher: Stuttgart ; New York : Thieme, [2015]Description: 1 online resource (xvii, 446 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783131731210
  • 3131731214
Subject(s): NLM classification:
  • WE 20
Online resources:
Contents:
Experimental Research Methods in Orthopedics and Trauma; Title Page; Copyright; Contents; Foreword; Endorsement by the International Combined Orthopaedic Research Societies (I-CORS) Member Organizations; Preface; Acknowledgments; Contributors; 1 Why Do We Need Experimental Research?; 1 Evidence-Based Research; 2 Establishing a Basic Research Facility in Orthopedic Surgery; 3 Good Laboratory Practice and Quality Control; 4 How to Prepare for a Period in Research; 2 Structural Biomechanics; 5 Physiological Boundary Conditions for Mechanical Testing.
6 Static, Dynamic, and Fatigue Mechanical Testing7 Use of Human and Animal Specimens in Biomechanical Testing; 8 Whole Bone Biomechanics; 9 Biomechanics of Trabecular and Cortical Bone; 10 Biomechanics of Fracture Fixation; 11 Biomechanical Assessment of Fracture Repair; 12 Biomechanics of Cartilage; 13 Biomechanics of Joints; 14 Spine Biomechanics; 3 Functional Biomechanics; 15 Musculokeletal Dynamics; 16 Measurement Techniques; 17 Clinical Assessment of Function; 18 Functional Biomechanics with Cadaver Specimens; 4 Numerical Biomechanics; 19 Inverse Dynamics.
20 Principles of Finite Elements Analysis21 Validation of Finite Element Models; 22 Computational Biomechanics of Bone; 23 Numerical Simulation of Implants and Prosthetic Devices; 24 Numerical Simulation of Fracture Healing and Bone Remodelling; 5 Imaging; 25 Micro-Computed Tomography Imaging of Bone Tissue; 26 Imaging Bone; 27 Ultrasound Techniques for Imaging Bone; 28 In Vivo Scanning; 29 Imaging of Cartilage Function; 30 Histochemistry Bone and Cartilage; 31 Immunohistochemistry; 32 Molecular Imaging In Situ Hybridization; 33 Laser Scanning Confocal Microscopy and Laser Microdissection.
34 Image Analysis Histomorphometry Stereology6 Cellular Studies; 35 Cell Culture Research; 36 Cartilage Explants and Organ Culture Models; 37 Fluid Flow and Strain in Bone; 38 Biomechanics of Bone Cells; 7 Molecular Techniques in Bone Repair; 39 Molecular Testing; 40 Genetically Modified Models for Bone Repair; 8 In Vivo Models; 41 General Considerations for an In Vivo Model; 42 Animal Models for Bone Healing; 43 Models for Impaired Healing; 44 In Vivo Models for Bone and Joint Infections; 45 In Vivo Models for Articular Cartilage Repair; 46 In Vivo Soft Tissue Models; 9 Tissue Engineering.
47 Scaffolds for Tissue Engineering and Materials for Repair48 Use of Growth Factors in Musculoskeletal Research; 49 Stem Cells for Musculoskeletal Repair; 50 Biological Evaluation and Testing of Medical Devices; 10 Statistics for Experimental Research; 51 Study Design; 52 Power and Sample Size Calculation; 53 Nonparametric versus Parametric Tests; 54 How to Limit Bias in Experimental Research; Index.
Summary: From bioinformatics to nanotechnology, advances in basic research ultimately drive advances in clinical care. This book provides a comprehensive summary of all current research methodologies for translational and pre-clinical studies in biomechanics and orthopedic trauma surgery. With this roadmap at hand, specialists and trainees will have the tools to conduct high-quality experimental research in any area of musculoskeletal science, with a solid understanding of how the findings can be applied in patient care. Special Features: Utilizes the principles and methodology of modern, evidence-bas.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Class number URL Status Date due Barcode
Electronic book Stenhouse Library Link to resource Available

Print version record.

Includes bibliographica references and index.

Experimental Research Methods in Orthopedics and Trauma; Title Page; Copyright; Contents; Foreword; Endorsement by the International Combined Orthopaedic Research Societies (I-CORS) Member Organizations; Preface; Acknowledgments; Contributors; 1 Why Do We Need Experimental Research?; 1 Evidence-Based Research; 2 Establishing a Basic Research Facility in Orthopedic Surgery; 3 Good Laboratory Practice and Quality Control; 4 How to Prepare for a Period in Research; 2 Structural Biomechanics; 5 Physiological Boundary Conditions for Mechanical Testing.

6 Static, Dynamic, and Fatigue Mechanical Testing7 Use of Human and Animal Specimens in Biomechanical Testing; 8 Whole Bone Biomechanics; 9 Biomechanics of Trabecular and Cortical Bone; 10 Biomechanics of Fracture Fixation; 11 Biomechanical Assessment of Fracture Repair; 12 Biomechanics of Cartilage; 13 Biomechanics of Joints; 14 Spine Biomechanics; 3 Functional Biomechanics; 15 Musculokeletal Dynamics; 16 Measurement Techniques; 17 Clinical Assessment of Function; 18 Functional Biomechanics with Cadaver Specimens; 4 Numerical Biomechanics; 19 Inverse Dynamics.

20 Principles of Finite Elements Analysis21 Validation of Finite Element Models; 22 Computational Biomechanics of Bone; 23 Numerical Simulation of Implants and Prosthetic Devices; 24 Numerical Simulation of Fracture Healing and Bone Remodelling; 5 Imaging; 25 Micro-Computed Tomography Imaging of Bone Tissue; 26 Imaging Bone; 27 Ultrasound Techniques for Imaging Bone; 28 In Vivo Scanning; 29 Imaging of Cartilage Function; 30 Histochemistry Bone and Cartilage; 31 Immunohistochemistry; 32 Molecular Imaging In Situ Hybridization; 33 Laser Scanning Confocal Microscopy and Laser Microdissection.

34 Image Analysis Histomorphometry Stereology6 Cellular Studies; 35 Cell Culture Research; 36 Cartilage Explants and Organ Culture Models; 37 Fluid Flow and Strain in Bone; 38 Biomechanics of Bone Cells; 7 Molecular Techniques in Bone Repair; 39 Molecular Testing; 40 Genetically Modified Models for Bone Repair; 8 In Vivo Models; 41 General Considerations for an In Vivo Model; 42 Animal Models for Bone Healing; 43 Models for Impaired Healing; 44 In Vivo Models for Bone and Joint Infections; 45 In Vivo Models for Articular Cartilage Repair; 46 In Vivo Soft Tissue Models; 9 Tissue Engineering.

47 Scaffolds for Tissue Engineering and Materials for Repair48 Use of Growth Factors in Musculoskeletal Research; 49 Stem Cells for Musculoskeletal Repair; 50 Biological Evaluation and Testing of Medical Devices; 10 Statistics for Experimental Research; 51 Study Design; 52 Power and Sample Size Calculation; 53 Nonparametric versus Parametric Tests; 54 How to Limit Bias in Experimental Research; Index.

From bioinformatics to nanotechnology, advances in basic research ultimately drive advances in clinical care. This book provides a comprehensive summary of all current research methodologies for translational and pre-clinical studies in biomechanics and orthopedic trauma surgery. With this roadmap at hand, specialists and trainees will have the tools to conduct high-quality experimental research in any area of musculoskeletal science, with a solid understanding of how the findings can be applied in patient care. Special Features: Utilizes the principles and methodology of modern, evidence-bas.

English.

WorldCat record variable field(s) change: 650

There are no comments on this title.

to post a comment.
London Health Libraries Koha Consortium privacy notice